Supra Mitral Valvular Stenosis caused by Left Atrial Myxoma (video)
Tổng số lượt xem trang
Thứ Ba, 27 tháng 11, 2012
Thứ Năm, 22 tháng 11, 2012
EUS for MSK
Review article: Ultrasound elastography for musculoskeletal
applications
The British Journal of Radiology, November 2012
Kỹ thuật này cũng có kết quả trong bản đồ đàn
hồi mã hoá màu định tính hoặc bản đồ đàn hồi thang xám [greyscale elastogram] miêu tả độ cứng mô tương
đối. Phương pháp này có lợi thế tạo hình
mô sâu hơn, không thể truy cập khi nén từ ngoài, và đã được sử dụng chủ yếu để tạo hình cho gan, tuyến giáp và vú.
Sóng biến dạng EUS dựa trên một nguyên tắc vật
lý hoàn toàn khác. Sóng biến dạng được tạo ra trong mô khi sóng siêu âm quy ước
được tạo bởi đầu dò tương tác với các mô. Sóng biến dạng truyền vuông góc
với trục dời chỗ do xung siêu âm và giảm nhanh khoảng 10 000 lần hơn siêu âm
quy ước. Bằng cách sử dụng thuật toán ultrafast, vận tốc của sóng biến
dạng có thể được đo và được sử dụng để đánh giá độ cứng mô bằng cách tính toán
mô đun đàn hồi của Young theo công thức:
Kỹ thuật này cho kết quả trong cả bản đồ đàn hồi [elastogram] màu
mã hóa định
tính và bản đồ
đàn hồi định lượng (theo đơn vị kPa)
hoặc vận tốc sóng biến dạng (theo đơn vị cms–1). Phương pháp này khách quan hơn strain EUS, vì không cần nén mô, đánh
giá trực tiếp độ đàn hồi với số đo định
lượng. Tuy nhiên, có những mối quan tâm về việc sử dụng của phương pháp này
trong các cấu trúc nông, vì sóng biến dạng cần được siêu âm tạo ra ở độ sâu nhất định.
EUS thoáng qua, còn được gọi là elastography
kiểm soát rung động
[vibration-controlled elastography], là một biến thể của
sóng biến dạng EUS, theo đó kích thích nén từ ngoài được áp dụng bằng cách sử
dụng một short-tone burst of
vibration. Phương pháp này cũng dựa trên ước tính vận tốc của sóng biến
dạng trong mô, nhưng để tránh xu hướng gây ra bởi sự phản xạ và nhiễu xảy ra
giữa các mô, rung động là tạm thời, do đó sóng chuyển tiếp có thể được tách ra
từ sóng phản xạ. EUS thoáng qua chủ yếu
được sử dụng trong khám cho bệnh gan.
Những viễn cảnh tương lai
EUS là đại diện quan trọng nhất cho phát triển
kỹ thuật của siêu âm từ sau tạo hình Doppler. Kỹ thuật này có nhiều lợi thế hơn
các phương pháp đánh giá đàn hồi khác của mô, chẳng hạn như MR elastography, vì
máy có chi phí thấp, nhanh, không xâm hại, và sẵn có tiềm năng lâm sàng rộng
hơn. Cho đến nay việc sử dụng EUS có các bằng
chứng rất hứa hẹn nhằm đánh giá tính chất cơ học của cơ xương khớp
trong lâm sàng.
Dữ liệu sơ bộ cho thấy thậm chí EUS
nhạy hơn so với MRI hoặc thiết bị siêu âm thang xám trong việc phát hiện các thay đổi subclinical
[tiền lâm sàng] của cơ bắp và dây chằng, và do đó có thể có giá trị cho chẩn đoán sớm và trong y
học phục hồi chức năng. EUS có thể được sử dụng như công cụ nghiên cứu sâu vào các cơ chế sinh học và sinh lý bệnh của bệnh cơ
gân [musculotendinous].
Tuy nhiên, mặc dù được quan tâm rất lớn trong
kỹ thuật, các tài liệu được công bố vẫn
còn rất hạn chế và chủ yếu phụ thuộc vào báo cáo ca bệnh hoặc các nghiên cứu không
kiểm soát với dân số nghiên cứu nhỏ, và sử dụng kỹ thuật EUS và hệ thống
tính điểm khác nhau. Có một số vấn đề kỹ thuật, trong đó thiếu các phương pháp định lượng, xảo ảnh, giới
hạn và các biến thể trong áp dụng các kỹ
thuật bởi người dùng khác nhau, làm hạn chế tính lập lại của phương pháp.
Có nghi ngờ về các tiện ích lâm sàng tiềm năng
của các công cụ chẩn đoán mới này, như trong hầu hết trường hợp, EUS cho thấy các
thay đổi đã rõ trên siêu âm quy ước hoặc Doppler màu, trong khi EUS lại không thay đổi rõ khi bệnh còn ẩn trên tạo hình quy ước, và do đó về lâm sàng là không quan trọng.
Thứ hai, chúng ta cần phải cẩn thận thiết lập
các chỉ định cho EUS. Các mục tiêu lý tưởng trên nghiên cứu đoàn hệ [cohort] của bệnh
nhân có triệu chứng nhưng non-ultrasound-evident, bệnh nhân có nguy cơ hoặc bệnh nhân ở giai đoạn rất sớm của bệnh, để
điều tra cho dù EUS nhạy hơn so với tạo hình ảnh quy ước trong mô tả thay đổi
lâm sàng quan trọng sớm hơn. Nghiên cứu đa trung tâm có kiểm soát lâu dài [multicentre long-term controlled studies] là
cần thiết; các nghiên cứu này nên bao
gồm các quần thể lớn của lứa tuổi khác nhau và mức độ hoạt động với theo dõi
lâu dài và mối tương quan với mô học, tạo hình quy ước (siêu âm và MRI) và dữ
liệu cơ sinh học và lâm sàng, để mô tả các mô hình và tính chất của các dấu
hiệu EUS và ý nghĩa lâm sàng của chúng.
Cuối cùng, các thuật toán mới cho phép đánh giá
định lượng tính đàn hồi như EUS sóng biến dạng hoặc ARFI nên được nghiên cứu và so
sánh với strain EUS định tính.
Kết luận
Do thiếu tiêu chuẩn hóa và nghiên cứu có giới hạn, EUS trong hình thức hiện tại vẫn còn là một kỹ thuật rất chủ quan, với giá
trị lâm sàng gây tranh cãi. Với tiêu chuẩn hóa và cấu trúc thêm nghiên cứu, EUS có thể trở
thành một công cụ bổ sung có giá trị trong việc điều tra của bệnh cơ xương khớp.
-----------
Acoustic radiation force impulse (ARFI) is a type of
strain EUS whereby tissue is excited internally by a focused ultrasound pulse,
instead of external (manual or physiological) compression [14, 35–37]. As the
ultrasound pulse travels through the tissue, soft tissue experiences larger displacement
than hard tissue. After the excitation and displacement by the pulse, the tissue
relaxes to its original configuration. The tissue displacement by the original push pulse can be measured using the application of
several short-time pulse echoes, which provides data for comparison with the
reference image [14, 35–37].
The technique also results in a qualitative colour-coded or
greyscale elastogram depicting relative tissue stiffness. This method has the
advantage of imaging deeper tissue, not accessible by superficial external
compression, and has been used mainly for liver, thyroid and breast imaging [14, 35–37].
Shear wave EUS is based on a completely different physical
principle. Shear waves are generated within tissue when the conventional
ultrasound waves produced by the transducer interact with tissue [38]. Shear waves
propagate perpendicular to the axial displacement caused by the ultrasound
pulse and attenuate approximately 10 000 times more rapidly than conventional ultrasound
[38]. By use of ultrafast algorithms, the velocity of shear waves can be
measured and used to evaluate tissue stiffness by calculating the elastic Young’s
modulus according to the formula:
This technique results in both qualitative colour coded elastograms and
also quantitative maps either of elasticity (in kPa) or of shear wave velocity
(in cms–1). This method is more objective than strain EUS, because
of the lack of tissue compression, the direct assessment of elasticity and the
quantitative measurements provided. However, there are concerns about the use
of this method in very superficial structures, as a certain depth of ultrasound
penetration is needed for shear waves to be produced [14, 38].
Transient EUS, also known as vibration-controlled elastography, is a variant of shear wave EUS, whereby
the external compression is applied by using a short-tone burst of vibration [39]. The method also relies on the estimation of the velocity of shear waves in tissue, but in order to avoid the bias caused by reflections and
interferences occurring between the tissues, vibration is transient, so that forward waves can be separated from the reflected waves [39]. Transient EUS is mainly used in examinations for liver disease [14, 39].
Ultrasound elastography for the examination of tendons
The Achilles tendon has provided most of the clinical data
available so far in musculoskeletal applications; it was the first area to be
investigated using free-hand strain EUS (Table 1). In a study of 50
asymptomatic and
sonographically normal Achilles tendons in healthy volunteers,
the normal tendons were found to have two distinct EUS patterns (Figure 1)
[17]. They were either homogeneously hard structures or, in the majority of
cases (62%), they were found to have considerable inhomogeneity with soft areas
(longitudinal bands or spots), which did not correspond to any changes in B-mode or Doppler ultrasound [17].
These findings were confirmed in two studies by the same
research group, comparing normal (asymptomatic) and abnormal (symptomatic)
tendons [18–20]. The asymptomatic tendons were found to be homogeneously
hard in 86–93% of cases, containing mild softening (yellow)
in 7–12% of cases and containing marked softening (red) in 0–1.3% of cases
[18–20]. By contrast, symptomatic tendons were found in EUS to contain marked
softening in 57%, mild softening in 11% and nosoft areas (hard structures) in
32% of cases [18]. The alterations in asymptomatic tendons were mainly observed in the tendon mid-portion and were not always found
to correspond to alterations in conventional ultrasound [18–20]. Mild softening
(yellow) was not correlated with conventional ultrasound abnormalities, whereas marked softening (red) was found mainly in cases
with ultrasound disease, so the authors suggest that only marked soft areas
should be considered as abnormal in Achilles tendon EUS [19, 20] (Figure 2).
The nature of the EUS alterations found in asymptomatic and sonographically
normal tendons is not yet completely understood; it is suggested that they may
either correspond to early (pre-clinical) changes not yet evident using ultrasound or to false-positive findings, secondary to
tissue shifting/non-axial movement at interfaces between collagen fibres
[17–20]. To date no histopathology or follow-up studies are available to
elucidate the above presumptions.
However, another study used strain EUS to assess 12 patients
with Achilles tendinopathy using ultrasound and MRI and found increased
stiffness in the abnormal tendons, compared with the non-symptomatic, which were
softer [21]. These findings are completely different from those previously
reported and emphasise the need for further research on EUS of the Achilles
tendon.
Technical considerations and limitations of ultrasound
elastography
The major problem in the application of EUS is that there
are a wide variety of techniques and processing algorithms currently available
for producing and displaying elastographic images and therefore the findings as
well as the artefacts or limitations may be highly dependent on the technique
and may be specific to a specific system. Experience regarding technical
problems and the means of resolving them has resulted from the use of free-hand
compression EUS. Compression EUS is technically very challenging in terms of
the proper application of the technique. It is difficult to produce high
quality, artefact-free cine loops of decompression–
compression cycles. The problems are associated with either
inherent limitations of the technique itself or the characteristics of the
musculoskeletal system.
A major issue associated with compression EUS is determining
the correct amount of pressure to be applied on tissue. The pressure should be
moderate, described as the level of pressure that maintains contact with skin
and for which the association between pressure and strain is proportional [6]. Very high or low pressure should be avoided,
as the elastic properties of tissue become non-linear [6]. Most EUS systems now
provide software, which allows a feedback of the amount of pressure as a visual
indicator/bar displayed on the screen alongside sonographic images thus
ensuring the correct application of pressure. To minimise intra-observer
variation and avoid transient temporal fluctuations, the scoring or measurements in the elastograms should be based on examination
of entire cine loops instead of single static images [17, 20, 34]. The most
common method to assess the elastograms is by viewing representative images derived from cine loops of at least three
compression–relaxation cycles [17–20, 34]. The images should be chosen at the
compression phase and in the middle of each cycle, as the calculation of the
elastogram at the initial and final stages of each cycle will be inaccurate [18–20].
Another major problem in strain EUS is the lack of quantitative
measurements. This has led researchers to use various methods for the
assessment of the elastograms, which include semi-quantitative measurements (strain
ratio) [17], qualitative assessment visual assessment of elastograms using
patterns, scores or grades [17–20], or by using commercially available external
computer software [25, 26]. This has led to considerable confusion in the
interpretation of the findings, a lack of reproducibility and difficulty in comparing the results from
different studies, even if the same technique (strain EUS) is applied in all
cases.
When using EUS for examining musculoskeletal tissue, special
issues should be taken into consideration.
In conventional musculoskeletal ultrasound the amount of
pressure should be as light as possible, so as not to distort the underlying
tissues (e.g. fluid within bursa or synovial cavity), whereas in EUS a certain
amount of
pressure is necessary to allow the correct application of the
technique. The examination probe should always be held perpendicular to the
tissue to avoid anisotropy, as the B-mode appearance influences the acquisition
of EUS data [18–20]. Although tendon images should be taken in both transverse
and longitudinal planes, longitudinal images are of better quality, as it has
been shown that the reproducibility of transverse images of the Achilles tendon
is less than that of longitudinal images because of artefacts at the medial and
lateral sides of the image secondary to unilateral pressure and out-of-plane
movements of the transducer [17]. There are elasticity changes at the borders
of the elastogram attributed to inhomogeneous application of pressure [17–20],
and so overlapping images should be acquired to overcome this problem. There
are also limitations and difficulties related to the anatomy of the area examined. EUS is especially
problematic in cases of superficial protuberant masses and in areas with
prominent adjacent bony structures (e.g. at the level of the malleoli when examining tibialis posterior and the peroneal tendons), where
it is difficult to apply uniform compression over the entire region of interest
[34].
Another important parameter is the size of the elastogram.
The elastogram displays the elasticity of each tissue relative to the remaining
tissue within it. Therefore, the amount and level of stiffness of the
surrounding tissue influences the appearance of the tissue of interest. This is
not a major problem in tissues such as the breast where the surrounding tissue
is fairly homogeneous (fat and glandular tissue). In musculoskeletal EUS,
however, the elastogram may include tissues with wide elasticity differences
(fat, tendon, bone, muscle), leading to a wider scatter in the acquired
elasticity data. For the Achilles tendon, the suggested standard size for
longitudinal scans is a depth of three times the tendon and about
three-quarters of the screen, and for transverse scans the paratenon should be
included [20]. However, this suggestion is not universally applied, leading to
difficulties in comparisons between studies.
Another standardisation problem is the distance between the
probe and the tissue of interest. In many musculoskeletal applications, the
tissue of interest is very superficial or even lies directly under the skin
(e.g. Achilles tendon). In most ultrasound systems a minimum distance (usually
1.2 mm) from the skin is needed to place the box of the elastogram, so in thin
people the use of gel pads or probe adaptors is necessary to increase the
distance between the skin and probe [18–21]. Using these stand-off devices has
been proven not to influence the appearance of the elastogram [18, 19]. In
conventional musculoskeletal imaging, the use of large amounts of gel is common
practice in order to create an even surface and to reduce the amount of
pressure on the tissue. However, when performing EUS for musculoskeletal
applications, care should be taken not to include the gel in the box of the elastogram, as it results in dramatic changes,
making the tendons appear considerably stiffer compared with the gel (Figure
5).
Several artefacts can be encountered during the application
of EUS in musculoskeletal tissues, which reduce the quality of the elastograms
and may lead to misinterpretation of the images. These include fluctuant
changes at the edges of the elastogram and at the medial and
lateral borders of thin structures (such as theAchilles tendon in the axial
plane) due to instability and out-of-plane movement of the transducer (Figure
1b) [17–19]. Occasionally red (soft) lines may appear around calcifications or
phleboliths, behind dense bone and at the superficial margin of homogeneous
lesions (such as lipomata; Figure 2b) [20, 34]. Similar changes (red lines) appear
at the interfaces between tissues (such as between adjacent muscles), due to
tissue shifting (Figure 4b).
Characteristic artefacts are also associated with cystic masses,
which appear as a mosaic of all levels of stiffness (all colours), and with
lesions adjacent to major vessels, where pulsations result in mistracking of
echoes [34].
Familiarity with the above artefacts is important, as they should
be excluded from the qualitative or quantitative scoring of the elastograms.
Future perspectives
EUS probably represents the most important technical development
in the field of ultrasonography since Doppler imaging. It has many advantages
over other methods of tissue elasticity estimation, such as MR elastography, as
it is a low-cost, fast, non-invasive system, and has the potential of wider
clinical availability. The evidence so far seems very promising that EUS can be used to assess the mechanical properties of
musculoskeletal tissues in the clinical setting.
Preliminary data show that EUS may even be more sensitive
than MRI or grey-scale ultrasound in detecting subclinical changes of muscle
and tendon, and therefore could be
valuable for early diagnosis and during
rehabilitation medicine. EUS could be used as a research tool
to provide insight into the biomechanics and pathophysiology of
musculotendinous disease.
However, despite the great interest in the technique, the
published literature is still very limited and mainly depends on case reports
or non-controlled studies with small study populations using various EUS
techniques and scoring systems. There are several technical issues, including a lack of quantification methods, artefacts, limitations
and variation in the application of the technique by different users, which
limit the reproducibility of the method.
There are doubts regarding the potential clinical utility of
this new diagnostic tool, as in most cases the EUS showed changes already
evident on conventional ultrasound or colour Doppler imaging, whereas EUS
changes not evident on conventional imaging were occult, and therefore
not clinically important.
For all of the above reasons, we think that a more systematic
and structured approach to the investigation of this new method should be
undertaken. First, we advocate standardisation of EUS for soft tissue
applications, based on the manufacturers’ suggestions and consensus between
users, employing parameters such as the size of the elastogram, the use of
adaptors/pads/gel, the scoring systems and so on. This will be of paramount importance in achieving consistency in the application
of the technique and should allow comparisons between studies. In order to overcome
the technical issues associated with the use of EUS in superficial tissues, close collaboration between the industry and clinical
researchers will allow the clinical experience to be used for the development
of optimised protocols dedicated to musculoskeletal applications.
Second, we need to carefully establish the indications for
EUS. These would ideally focus on the cohort of patients with symptomatic but
non-ltrasound-evident disease, patients at risk or patients at very early
stages of disease, in order to investigate whether EUS is more sensitive than
conventional imaging in depicting earlier clinically important changes.
Multicentre long-term controlled studies are needed; these should include large
populations of different ages and levels of activity with long-term follow-up
and correlation with histology, conventional imaging (ultrasound and MRI), and
biomechanical and clinical data, in order to describe the pattern and nature of
EUS findings and their clinical significance.
Finally, newer algorithms that allow quantitative assessment
of elasticity such as shear wave EUS or ARFI should be studied and compared
with qualitative strain EUS.
Figure 5. The impact of gel on the strain elastograms. (a,
b) Longitudinal and (c, d) axial elastograms of the same asymptomatic
Achilles tendon (T). The inclusion of a small amount of gel
in the elastogram (b, d) results in a homogeneously stiffer tendon without
areas of distinct softening (red), which are evident when no gel is included
(a, c). The level of pressure and the ultrasound elastography settings were
kept stable.
Conclusion
Owing to lack of standardisation and limited research, EUS
in its current form remains a highly subjective technique, with debatable
clinical value. With the proper standardisation and further structured
research, EUS may become a valuable supplementary tool in the investigation of
musculoskeletal disease.
Figure 3. Longitudinal shear wave elastograms of a normal
(a) Achilles and (c) patella tendon, as well as (b, d) a case of distal patella
tendinopathy in a 23-year-old football player. The elasticity qualitative and
quantitative scale is presented at the upper right corner of the images.
Measurements (mean, minimum, maximum and standard deviation) within the circular
region of interest (ROI) are presented in kilopascals ranging from 0
(dark blue) to 300 (dark red). (a, c) The normal Achilles and patella tendons
(T) appear as homogeneous stiff (red) structures, as opposed to fat, which is
homogeneously soft (blue). (a) The mean stiffness of a representative area at
the mid-portion of the Achilles free tendon is 300 kPa. (d) In the case of
distal patella tendinopathy, the tendinopathic area appears hypoechoic with
neovascularity (asterisk). (b) In the corresponding elastogram, the abnormal area appears softer (blue; mean elasticity
40.94 kPa) compared with the stiffer normal tendon (red; mean elasticity 261.16
kPa). The small amount of fluid in the deep infrapatella bursa appears softer
than the tendinopathic area (blue, mean elasticity 34.38 kPa).
Đăng ký:
Bài đăng
(
Atom
)