SUMMARY
Objective ShearWave™
Elastography (SWE) is real-time, quantitative and user-independent technique,
recently introduced in the diagnostic work-up of thyroid nodules. Hashimoto’s
thyroiditis (HT), characterized by variable degrees of lymphocytic infiltration
and fibrosis, might affect shear wave propagation. The aim of this study was to
assess the feasibility of SWE in cytologically benign thyroid nodules within
both Hashimoto’s and nonautoimmune thyroid glands. The effect of autoimmunity
on the gland stiffness was also evaluated.
Design longitudinal study in a
single centre.
Patients SWE was
performed in 75 patients with a benign thyroid nodule at cytology: 33 with
Hashimoto’s thyroiditis (HT group) and 42 with uni- or multi-nodular goitre,
negative for thyroid autoimmunity (non-HT group).
Results The elasticity index (EI) of
the extra-nodular tissue was greater, though not statistically significant, in
the HT than in the non-HT group (24·0 ± 10·5 kPa vs 20·8 ± 10·4 kPa; P
= 0·206). However, the EI of extra-nodular tissue was related to the TPOAb
titre in the HT group (P = 0·02) and was significantly higher in
patients with HT receiving L-thyroxine than in the euthyroid subjects (P
= 0·02). The EI of thyroid nodules was similar in HT and non-HT groups. In both
groups, the stiffness of nodules was significantly higher than that of the
embedding tissue.
Conclusions Our data
indicate that SWE correctly defines the elasticity of thyroid nodules
independently from the coexistence of autoimmune thyroiditis, always being able
to differentiate nodular tissue from the surrounding parenchyma. In HT, the
stiffness of extra-nodular tissue increases in relation to both the thyroid
antibody titre and the degree of impairment of thyroid function.
BÀN LUẬN
Dữ liệu của chúng tôi cho thấy
kỹ thuật sử dụng
siêu âm đàn hồi sóng biến dạng [shear wave elastograpphy, SWE] này có thể
xác định một
cách chính xác độ đàn hồi của các hạt giáp, độc
lập với nền tuyến giáp cứng như trong viêm giáp Hashimoto (HT). Một gradient độ cứng đã được
quan sát thấy trong tất cả các bệnh
nhân, với các hạt giáp
là cứng hơn đáng kể so với
các mô xung quanh, cả
trong HT và trong các nhóm không-HT.
Viêm giáp tự
miễn mạn tính HT tự nó [per se] và độ
nặng của nó, theo đánh giá của hiệu giá TPOAb và cần
có liệu pháp thay thế
với L-T4 cho suy giáp,
làm tăng thêm chỉ số đàn hồi
[elastic index, EI] nhu mô quanh hạt.
Tuy nhiên, ngay cả trong viêm
giáp Hashimoto, một
gradient độ đàn hồi đáng kể được duy trì giữa
các hạt lành tính và mô-ngoài-hạt, chỉ số EI của hạt
luôn lớn hơn so với nhu mô tuyến
giáp mà hạt nhúng vào. Trong chấp nhận và thống nhất với phát hiện này, thấy có quan hệ
trực tiếp giữa các chỉ
số đàn hồi EI của mô
quanh hạt và chỉ số EI các hạt
lành tính ở viêm giáp Hashimoto.
Siêu âm đàn hồi
sóng biến dạng SWE là một
công cụ mạnh mẽ cho việc
chẩn đoán các hạt giáp
ác tính, chỉ số EI của hạt ác tính cao hơn đáng kể so với hạt lành tính.Theo chúng tôi biết, đây là nghiên cứu khảo sát đầu tiên ảnh hưởng của viêm giáp HT trên
tính năng đàn hồi hạt giáp. Cũng được biết rõ rằng viêm giáp tự miễn mạn tính HT, được
đặc trưng bằng thâm nhiễm
tế bào lympho và xơ hóa, làm thay đổi siêu cấu trúc [ultrastructure] tuyến giáp gây cứng mô tuyến.
Trong bệnh to cực [acromegaly], một nguyên do đặc trưng khác gây xơ
hóa tuyến giáp, siêu âm đàn hồi đã cho thấy là không ích lợi trong việc
dự đoán tính chất ác tính của các hạt giáp. Điều này do bệnh nhân bệnh to cực dường
như có một tỷ lệ hạt cứng lớn hơn,
nhưng không phải ác tính trên mô bệnh học. Ở những bệnh
nhân này, xơ hóa và kết quả là độ
cứng có thể do tăng tổng hợp collagen và lắng
đọng gây ra bởi GH và IGF1. Mặc
dù hạn chế bởi loạt bệnh
nhân của chúng tôi không nhiêu, những phát hiện của nghiên cứu
này cho thấy viêm giáp tự miễn mạn tính HT không làm giảm khả
năng siêu âm đàn hồi sóng biến
dạng trong đánh giá các hạt giáp ở viêm giáp tự miễn mạn tính HT.
Điều
này có liên quan đặc biệt bởi vì: (i) HT ảnh
hưởng đến ít nhất 5% dân số
nói chung, (ii) bệnh nhân với
HT có nhiều khả năng để phát triển
các hạt giáp, do, ít nhất
là một phần, từ kích thích TSH mãn tính;
(iii) một
số nghiên cứu cho thấy mối liên quan giữa
HT và ung thư tuyến giáp loại nhú [papillary
carcinoma]; và (iv) một tỷ lệ
cao các kết quả FNAC
đáng ngờ hoặc không xác định được báo cáo khi kiểm
tra hạt trong viêm giáp tự miễn
Hashimoto. Theo quan điểm này, việc xác định độ đàn hồi
chính xác trở nên quan trọng trong quy trình chẩn
đoán các hạt
trong viêm giáp tự miễn Hashimoto.
Để kết
luận, dữ liệu của
chúng tôi cho thấy siêu
âm đàn hồi sóng biến dạng SWE xác định chính xác độ
đàn hồi của các hạt giáp độc lập với viêm tuyến
giáp tự miễn mạn tính cùng tồn
tại, luôn có khả năng phân biệt
mô hạt từ nhu mô xung quanh. Trong viêm
giáp HT, độ
cứng mô ngoài hạt
tăng thêm trong tương quan cả hiệu
giá kháng thể tuyến giáp [thyroid antibody] lẫn mức độ suy giảm
chức năng tuyến giáp, cao hơn ở những
bệnh nhân đòi hỏi phải điều
trị L-thyroxine.
INTRODUCTION
Elastography is an evolving
technique aimed at differentiating benign from malignant thyroid nodules. This
technique allows in vivo estimation of the tissue mechanical properties
using a conventional ultrasound (US ) system with modified software.
Similarly to palpation, the rationale of elastography is that a cancerous
nodule is stiffer, with less elastic deformation compared with the surrounding
thyroid tissue or a benign thyroid nodule. This issue is of particular interest
because thyroid nodules are commonly encountered in clinical practice, being
detected by US in 19–67% of randomly selected individuals.1,2
As only a minority of these are malignant (5–15%3,4),
selecting the malignant ones for thyroid surgery represents a major clinical
issue.
Elastosonography, and in
particular real-time US-elastography (US-E), was recently investigated as a
tool for stratifying the presurgical risk of malignancy in nodules with
indeterminate or nondiagnostic cytology.5
Rago et al.6
evaluated tissue stiffness by US-E in a large group of patients with thyroid
nodules who underwent surgery for compressive symptoms or suspicion of
malignancy at fine-needle aspiration cytology (FNAC). US-E displayed a
sensitivity of 97%, a specificity of 100%, a positive predictive value of 100%
and a negative predictive value of 98%, independently from nodule size.
Recently, the same approach was applied to patients bearing nodules with
indeterminate or nondiagnostic cytology, confirming the association of nodular
stiffness with malignancy.6
Although promising, static US-E is biased by several factors, such as poor
reproducibility, inter-observer variability and lack of quantitative
information.7–9
Furthermore, US-E was mainly evaluated in highly selected patients, excluding
those with cystic nodules and nodules with eggshell calcification.10,11
As the estimation of elasticity is altered by the presence of a nearby hard
area, this technique is not reliable in the study of multi-nodular goitres,
which represent about 40% of all nodular thyroid glands.12
Shear Wave™ Elastography
(SWE) is a new real-time imaging modality, which uses a linear US transducer
operated with no added pressure. Transient pulses are used to generate
propagating shear waves in the body, and elasticity is directly calculated by
measuring the wave propagation speed. Currently, SWE is the only technique
producing real-time quantitative information on selected areas of thyroid
tissue.13
It is also claimed to be relatively operator-independent and reproducible.
Sebag et al.14
investigated the efficiency of this technique in predicting malignancy in
solitary or multiple thyroid nodules. Using a cut-off level of 65 kPa of
elasticity index (EI), they could predict malignancy with a sensitivity of
85·2%, a specificity of 93·9% and a positive predictive value of 92·3%. However,
the accuracy of SWE might be impaired in patients with acromegaly, in whom
GH/IGF I-induced fibrosis has been reported to increase nodule hardness, as
assessed by US-E, independently from the malignant nature of the lesion.15
A more common, potentially confounding condition, yet to be evaluated, is
chronic autoimmune Hashimoto’s thyroiditis (HT) coexistent with thyroid
nodules. At histology, HT is characterized by lymphocytic infiltration of the
thyroid parenchyma associated with variable degrees of fibrosis. The
characteristic US
pattern of Hashimoto’s glands consists of an array of tiny hypoechoic nodules
that may become confluent, interspersed with echogenic fibrous bands. These
pathological changes might affect shear wave propagation, thus hampering the
diagnostic potential of SWE in thyroid nodules. This issue is of particular
interest for two reasons. First, an increased prevalence of thyroid cancer has
been reported in patients with HT.16,17
Second, the diagnostic accuracy of FNAC may be diminished in nodules within a
Hashimoto’s gland, resulting in a higher rate of indeterminate or suspicious
cytological reports.18
To answer the question of
whether SWE might be feasible in nodules associated with HT, we investigated a
series of benign thyroid nodules at cytology, which were harboured either
within a Hashimoto’s gland or within a nonautoimmune thyroid.
PATIENTS and METHODS
Patients
The study enrolled 33
patients with HT harbouring one or more thyroid nodules (HT group) and 42
patients with uni-nodular or multi-nodular goitre, who had tested negative for
thyroid antibodies and had a normal echo pattern at US (non-HT group).19
Inclusion criteria were a previous FNAC indicating that the nodule was benign
and the absence of a dominant cystic component within the nodule.
The diagnosis of HT was made
in the presence of a positive test for thyroglobulin antibody (TgAb) and/or
thyroid peroxidase (TPOAb) antibody, and a hypoechoic pattern of the thyroid at
US. Fifty-four patients were euthyroid without therapy, and 14, all of them
belonging to the HT group, were euthyroid on L-thyroxine (L-T4) therapy. In
patients with HT, the indication of LT4 treatment was a diagnosis of
subclinical or overt hypothyroidism. Another seven patients, all with nodular
goitre, were on L-T4 TSH-suppressive treatment. In patients in L-T4 replacement
therapy and L-T4 TSH-suppressive therapy, the duration of L-T4 treatment ranged
from 12 to 156 months (median 36·0 months).
All patients gave their
informed consent to participate in the study.
Selection of nodules for FNAC
was made according to the current guidelines.20,21
FNAC was performed, under US
guidance, by a skilled endocrinologist using a 23-gauge needle attached to a
5-ml syringe.
Shear Wave Elastography
After a preliminary US evaluation
and a cytological diagnosis of a benign lesion, thyroid nodules were evaluated
by SWE. Briefly, SWE generates a remote radiation force by focused ultrasonic
beams, a patented technology called ‘Sonic Touch’. Several of these so-called
pushing beams at increasing depths are transmitted to generate a quasi-plane
shear wave frame that propagates throughout the whole imaging area. Then, an
ultrafast echographic imaging sequence (Ultrafast Imaging System) is performed
to acquire successive raw radiofrequency dots at a very high frame rate (up to
20,000 frames per second). From shear wave propagation speed, tissue elasticity
can be derived based on Young’s modulus formula (E = σ/ε, where σ is stress and
ε is strain). This results in a colour-coded image, blue representing
softer tissue and red stiffer tissue. Quantitative information is delivered as
EI expressed in kilo-Pascal (kPa).
Shear wave elastographic
measurement was performed with the Aixplorer, developed by SuperSonic Imagine
(Les Jardins de la Duranne, Aix en Provence , France ).
RESULTS
Patients in the HT and non-HT
groups were matched for age (Table 1). The calcitonin concentration was in the
normal range in all patients, confirming the benign nature of the nodule.
Conventional US
Table 1 summarizes the main US features of
evaluated nodules. In the HT group, the volumes of the thyroid and of the
nodules were significantly lower than in the non-HT group. The main US features,
which may suggest malignancy, such as hypoechogenicity, microcalcifications,
absence of halo and increased vascularization were equally distributed in the
HT and non-HT glands.
Shear Wave Elastography
Effect of chronic autoimmune thyroiditis on the
elasticity of extra-nodular thyroid parenchyma. The mean (±SD) EI of the extra-nodular tissue was higher in the HT
than in the non-HT group, but the difference did not reach statistical
significance (24·0 ± 10·5 kPa vs 20·8 ± 10·4 kPa; P = 0·2; Fig. 1). However, the severity of chronic autoimmune
thyroiditis significantly affected the elasticity of extra-nodular thyroid
parenchyma, as assessed by a significant direct relationship between the EI of
extra-nodular tissue and the serum titre of TPOAb (P = 0·02). Moreover,
the mean EI of the extra-nodular tissue was significantly higher in the 14
patients with HT who were on L-T4 substitution for hypothyroidism as compared
with the 54 untreated euthyroid patients (27·3 ± 9·0 kPa vs 20·9 ± 10·4
kPa, respectively, P = 0·02).
Figure 1. Mean (±SD)
elasticity index of extra-nodular thyroid parenchyma and of benign nodules in
Hashimoto’s thyroiditis (HT) and non-HT groups of patients.
Effect of chronic autoimmune thyroiditis on the gradient
of elasticity between thyroid nodules and extra-nodular tissue. The median EI was calculated for the whole cohort of patients, both
for thyroid parenchyma (20·4 KPa) and for nodules (29·5 KPa). The percentage of
patients having an EI of the thyroid parenchyma higher than the calculated
median one did not differ in HT (51·3%) as compared with the non-HT group
(48·7%). Similarly, HT and non-HT patients were equally distributed above and
below the median value of elasticity measured in nodular tissue (46% and 54%,
respectively).
The mean (±SD) EI of thyroid
nodules did not significantly differ in the HT as compared with the non-HT
group (Fig. 1). In the HT group, the EI of the extra-nodular
tissue was significantly related to the EI of the thyroid nodules (r2
= 0·196, P = 0·01). This association was absent in the non-HT group. The
stiffness of thyroid nodules was always higher than that of the embedding
tissue in both the HT and non-HT groups, and the difference between the two
regions of interest was statistically significant (Fig. 2).
Figure 2. Mean (SD)
elasticity index of benign nodules and extra-nodular thyroid parenchyma in
Hashimoto’s thyroiditis (HT) and non HT groups of patients.
DISCUSSION
Our data using shear wave
elastography confirm the ability of this technique to correctly define the
elasticity of thyroid nodules, independent from the presence of a stiffer gland
as observed in HT. A gradient of stiffness was observed in all patients, with
thyroid nodules being significantly harder than the surrounding tissue, both in
HT and in the non-HT groups.
Chronic autoimmune HT per
se and its severity, as assessed by TPOAb titres and by the need of
replacement therapy with L-T4 for hypothyroidism, increases the EI of
extra-nodular parenchyma. However, even in Hashimoto’s glands, a significant
elasticity gradient is maintained between benign nodules and the extra-nodular
tissue, the EI of nodules always being greater than that of the embedding
thyroid parenchyma. In agreement with this finding, a significant direct
relation was observed between the EI of the extra-nodular tissue and that of
the benign nodules in Hashimoto’s glands.
Shear wave elastography has
been reported to be a powerful tool for the diagnosis of malignant thyroid
nodules, the EI being significantly greater in malignant as compared with
benign nodules.14
To the best of our knowledge, this is the first study investigating the
influence of HT on the elastographic features of thyroid nodules. It is well
established that chronic autoimmune HT, being characterized by lymphocytic
infiltration and fibrosis, modifies thyroid ultrastructure resulting in a
stiffer gland. In acromegaly, another condition characterized by fibrosis of
the thyroid, elastosonography was found to be useless in predicting the
malignant nature of thyroid nodules. This is because patients with acromegaly
seem to have a greater prevalence of hard nodules, which are not malignant at
cytopathological examination.15
In these patients, fibrosis and consequent stiffness are probably due to
increased collagen synthesis and deposition induced by GH and IGF1.24
Although limited by the fact that our series of patients was not large, the
findings of the present study indicate that chronic autoimmune HT does not
impair the ability of shear wave elastography to evaluate thyroid nodules even
in chronic autoimmune HT. This is of particular relevance because: (i) HT
affects at least 5% of the general population;25
(ii) patients with HT are more likely to develop thyroid nodules, due, at least
in part, to a chronic TSH stimulation;26
(iii) several studies indicate an association between HT and thyroid cancer of
the papillary type;16,27–32
and (iv) a higher prevalence of suspicious or indeterminate FNAC reports was
reported when examining nodules harboured within a Hashimoto’s gland.33
In view of these considerations, correctly defining elasticity becomes
critically important in the diagnostic work-up of nodules within Hashimoto’s
glands.
In conclusion, our data
indicate that shear wave elastography correctly defines the elasticity of
thyroid nodules independently from the coexistence of chronic autoimmune
thyroiditis, always being able to differentiate nodular tissue from surrounding
parenchyma. In HT glands, the stiffness of extra-nodular tissue increases in
relation to both the thyroid antibody titre and the degree of thyroid function
impairment, being higher in patients requiring L-thyroxine therapy.